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This paper presents numerical simulations for the interaction of an expansion wave
with an incident shock wave of the opposite family, the specific aim being to study
the resultant reflection of the now-perturbed shock wave from a solid surface. This
problem is considered in the context of an incident flow entering a parallel duct, a
situation that commonly arises in a range of flow-turning problems including super-
sonic intake flows. Once the incident shock conditions are such that Mach reflection
must occur, it is shown that stabilization of a simple Mach reflection is only possible
for a narrow range of Mach numbers and that this depends sensitively on the relative
streamwise positioning of the origins of the shock wave and the expansion wave.

1. Introduction
Figure 1 shows a classical duct flow where a supersonic stream is turned, by a

single plane shock wave, from one uniform state to another. This often represents an
idealization for intake flows, in which case the ‘incident’ stream M1 would usually be
the flow downstream of another compression system. Focusing a plane shock exactly
upon the concave corner, however, is a unique design condition that is unlikely to
be realizable in practice. The off-design situation, where the incident shock wave
impinges downstream of the corner and is then distorted by a corner expansion fan
is the subject of this study.

Shock-wave reflection from a solid surface, and the transition between regular and
Mach reflection, has been the subject of extensive study for both steady and unsteady
flows. The steady case is appropriate here and the classical test configuration for
virtually all studies is the wedge-generated shock wave, as shown in figure 2. There
are two limiting criteria relating the wedge angle δW and the approach Mach number
M1 for the regular-to-Mach transition, both originally proposed by von Neumann
(1943). These are the so-called detachment criterion and the mechanical-equilibrium
criterion. The latter, usually now referred to as the von Neumann criterion, was
essentially re-introduced by Henderson & Lozzi (1975, 1979). Figure 3 presents the
(M1, δW )-domain for a perfect gas with γ = 1.4; the transition boundaries for the
two criteria are indicated and also the dual-solution domain, where both regular
reflection and Mach reflection are theoretically possible. The interception between
the two criteria occurs at Mach number 2.202, according to Molder (1979). The
dual-solution region leads to the possibility of a hysteresis process, first suggested
by Hornung, Oertel & Sandeman (1979) (see also Ben-Dor et al. 2002 for a more
extended discussion). Experimental studies show a sensitivity to test conditions and
stream disturbance, so that although Hornung & Robinson (1982) found that the
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Figure 1. Simple schematic for the flow at the inlet to a duct turning from one uniform state
to another through a single plane shock wave focused on an expansion corner.
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Figure 2. Schematic for classical shock-wave reflection, both (a) regular reflection and
(b) Mach reflection. I, incident shock wave; R, reflected shock wave; MS, Mach stem; δW ,
wedge angle.

transition, regular to Mach or vice versa, always occurred at the von Neumann
condition, other studies achieved the dual-solution state (e.g. Chpoun et al. (1995),
although some questions were raised concerning the two-dimensionality of their flow).
In computational fluid dynamics (CFD) studies, which are precisely two-dimensional
and therefore effectively disturbance free, it has generally been observed (e.g. Ivanov
et al. 1998; Ben-Dor et al. 1999) that if the wedge angle δW is progressively increased
from below the lower (von Neumann) boundary then transition occurs at the upper,
detachment, limit. When the initial deflection is above the detachment criterion, a
reduction in wedge angle only causes a transition to regular reflection at the lower
von Neumann boundary.
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Figure 3. Polar plot for shock-wave reflection for the configuration of figure 2.

The streamtube downstream of the Mach stem is subsonic. The expansion wave
that originates from the trailing edge of the wedge controls (provided that it is strong
enough) the sonic throat in this streamtube and, in consequence, the characteristics
of the upstream Mach stem. Various models have been proposed to predict the scale
of the Mach stem for the wedge-induced incident shock wave (e.g. Azevedo & Lui
1989, the most detailed so far being due to Li & Ben-Dor 1997). The factors that
determine the location and scale of the Mach stem turn out to be especially important
for the duct shock-wave–expansion-wave interaction case; these are explored in
detail in the present paper.

2. Modelling the shock–expansion interaction with the method of
characteristics

For the off-design case, the shock-wave reflection at the lower wall is determined by
a post-shock flow that has been turned towards the wall and also accelerated by the
influence of the expansion wave. This important condition has not been documented
to any extent other than in a short study by Li & Ben-Dor (1995).

The distortion of an incident shock wave by an expansion wave was modelled
initially by the rotational method of characteristics. The basic configuration for the
interaction is shown in figure 4. Here, interactions with the upper and lower surfaces
of the duct are excluded, so that there is no relevant length scale and the data depend
only upon the polar angle, φ, which is referenced to an origin at the expansion corner;
φLE and φT E define the angles for the leading edge and trailing edge of the expansion
fan. The initial (pre-shock) expansion field is a simple wave region (where only the
C+ characteristics are significant). Downstream of the shock wave the wave field is
non-simple and rotational, with compatibility conditions along the two families of
characteristics C+ and C−, defined respectively by (see Liepmann & Roshko 1957)

d(ν − δ) = −
√

M2 − 1

γRM2
d(s), (2.1)

d(ν + δ) = −
√

M2 − 1

γRM2
d(s). (2.2)
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Figure 4. Schematic showing the interaction of a centred expansion wave with an incident
shock wave. The angle φ is measured from an origin at the expansion corner. φLE and φT E

denote the leading and trailing edge of the initial expansion wave. All angles are measured
relative to the X-axis.

Here ν is the Prandtl–Meyer angle, δ is the local flow angle, R is the gas constant
and s is the entropy. In this region the C+ characteristics transmit information away
from the shock wave, as indicated in the schematic of figure 4. The C− characteristics
essentially arise from the reflection of the outgoing C+ characteristics by the rotational
flow downstream of the curved shock wave; they transmit information from the post-
shock flow field up to the shock wave, as shown.

The solution for the characteristics starts with an initial data curve produced by an
equal-interval discretization along the first significant C+ characteristic (originating
from φ = φLE) that radiates into the post-shock flow; the conditions along this
characteristic, and hence its trajectory, are simply determined from the known constant
initial post-shock state. These data points provide the origin of the C− characteristics
and the point where these characteristics terminate at the shock wave provides
the start point for all subsequent C+ characteristics. The characteristic construction
demonstrated in figure 4 is very coarse. For this construction the C− characteristic
from node 1 on the initial data curve is projected directly up to the shock wave at
node 3. The appropriate shock-wave slope at node 3, and hence also the shock-wave
position, is determined by satisfying the jump conditions across the shock wave and
also (2.2) between nodes 1 and 3. The C− characteristic from node 2 first solves
(2.1) and (2.2) for the location and values at the ‘interior’ node 4, requiring the (now
known) values at nodes 2 and 3 together with an interpolation, for the entropy at
node 4, from the so-far-constructed flow field (employing the constancy of entropy
along a streamline). The next step with this C− characteristic is the calculation of the
end shock point. As further start points are taken on the initial data curve, so the
extent of the computed shock front increases. All node computations, both ‘interior’
and shock points, require an iterative solution, which is continued until successive
node-Mach-number estimates change by less than 10−6.
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Figure 5. Convergence assessment for the MOC computations, for the example of a flow
with M1 = 3.0, δ1 = 24.89 degrees; the flow properties presented are those immediately
downstream of the shock wave. The solid lines represent computation with 400 points along
the perturbed shock front; the symbols represent a computation with 50 points. (a) Post-shock
Mach number; (b) post-shock flow angle δ and shock-wave angle θ . The shock-wave angle θ
is measured relative to the horizontal datum and the other quantities are defined in figure 4.

Figure 5 presents data, immediately post-shock-wave, for an example Mach-3.0
flow, the simulation extending to the position φ = 0 which would be the lower surface
of the duct. The solid lines and discrete symbols provide computations with 400 and
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Figure 6. Interaction between an expansion wave and a shock wave, of the opposite family,
showing the variation in the predicted angle for transition between regular and Mach reflection,
according to the von Neumann criterion (lower solid curve) and the detachment criterion (upper
solid curve).

50 points respectively along the perturbed shock front. All later modelling uses at least
400 points so that the method of characteristics (MOC) simulations can be regarded
as mesh-converged. Note that slight changes occur in the post-shock properties in
the region φ � φT E because of the manner of formation of the C− characteristics, by
internal reflection of the C+ characteristics from the rotational flow.

Using the MOC to determine the conditions, post-shock-wave, at impingement
upon the reflection surface (i.e. along the ray φ = 0), transition boundaries may be
predicted from the detachment and von Neumann criteria; see figure 6. The figure
also includes the boundary for detachment of the incident shock wave from the
upper-surface (i.e. shock-generator) leading edge.

The interception between the von Neumann and detachment criteria occurs at
M1 ≈ 1.69. Above this Mach number the domain is subdivided into three reflection
zones: the bottom zone, where only regular reflection is possible; the top zone, where
only Mach reflection should be possible; and an intermediate zone, where both
Mach reflection and regular reflection appear to be possible. The maximum deflection
angles are 25.2 degrees (at M1 ≈ 3.5) and 20.0 degrees (at M1 ≈ 2.76), for the
detachment and von Neumann criteria respectively. The detachment criterion extends
slightly below M1 ≈ 1.69, but the MOC had to be terminated at M1 ≈ 1.59 since
the ‘weak’ incident-shock-wave solution then provides a subsonic post-shock flow,
so that a solution for the characteristics is no longer possible. In the narrow region
1.59 � M1 � 1.69, therefore, the transition from regular to Mach reflection has to
occur at the detachment criterion and is followed almost immediately by detachment
of the incident shock wave from the upper-surface leading edge.

3. CFD modelling and the regular-reflection case
Detailed Euler computations were carried out using a second-order finite-volume

Godunov-type method, implemented on a structured mesh of quadrilateral cells; the
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cell-interface fluxes were evaluated using the generalized Riemann problem of Ben-
Artzi & Falcovitz (1984). This methodology has been applied by the present author to
a range of problems involving complex interactions between shock waves and vortex
sheets; see, for example Hillier (1991).

The streamwise extent of the domain for all computations occupied −0.05H � x �
3.8H , the leading edge of the upper shock-generating surface being at x = 0.0, y = H ,
where H is the duct height. Because of numerical ‘smearing’, an abrupt large-angle
deflection (i.e. one approximating a truly centred expansion) at the lower expansion
corner generates entropy errors in the layers of cells closest to the wall. This effect
is virtually eliminated by turning the flow progressively (in a circular arc) over
a short streamwise distance of 0.04H . The expansion-surface position in the later
computations then refers to the front of this segment. The cells are rectangular,
apart from in the immediate vicinity of the expansion corner. A constant cell size
�x = 0.0025H is used in the x-direction (1540 cells). For the upper 80% of the domain
the cell size in the y-direction is constant at �y = 0.0025H . A gradual refinement in
�y is employed as the lower surface is approached, to maintain resolution for various
short-Mach-stem cases. At the lower wall �y = 0.000 312 5H , with a total number of
480 cells in the y-direction.

The mesh boundary conditions are shown in the schematic of figure 7(a). The
upstream (inflow) boundary at X = −0.05H is held fixed at the free-stream condition.
This is also imposed at the lower boundary of the domain, between X = −0.05H and
the expansion corner. The downstream boundary is treated as a continuative outflow
condition; this is exact for the regular-reflection case since the exit flow is fully
supersonic. It is also exact for many Mach-reflection cases where a sonic throat forms
in the streamtube downstream of the Mach stem. For some cases a sonic throat cannot
be formed and there is a mixed outflow, with regions of subsonic and supersonic flow.
In these cases the outflow condition still appears satisfactory, and some examples of
this will be demonstrated later. The short segment −0.05 � X/H � 0, Y = H is also
treated as an outflow boundary.

The preceding mesh describes the ‘standard’ case. Comparative coarse-mesh
computations doubled �x and �y, and an assessment of mesh convergence for the
regular-reflection case may be made from the density contours presented in figure 8.
The flow deflection was just 0.5 degrees below the detachment criterion of figure 6
and therefore provides a sensitive operating condition. The simulations were started
impulsively, imposing the free-stream condition everywhere as the initial state. The
finer resolution of the incident and reflected shock waves using the standard mesh is
clear, but in fact there are only small discrepancies in contour detail between the two
cases. The residual errors associated with the expansion-corner modelling are equally
small. Exact Prandtl–Meyer theory requires that the total pressure P0 is preserved
through the expansion. The maximum errors in figure 8 occur in the surface layer of
cells, giving P0/P0,∞ equal to 99.2% and 98.6% for the standard and coarse meshes,
respectively. A detailed view of the flow field near the expansion corner, for the case
of figure 8(b), is shown in figure 7(b).

4. CFD modelling of Mach reflection
4.1. Expansion corner at X/H = 0.2, M1 = 2.0

In Mach reflection, stabilization of the Mach stem requires the formation of a sonic
throat in the post-Mach-stem streamtube, otherwise downstream disturbances can
propagate upstream to the Mach stem and alter its scale and location. In classical
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Figure 7. (a) Schematic showing boundaries of the computational domain: solid line, solid-
surface boundary condition; dash-dotted line, fixed-inflow boundary condition; dashed line,
continuative-outflow condition. (b) Density contours, in 5% intervals in ρ/ρ∞, showing details
for the case M1 = 2.0, δ1 = 19.44 degrees, with the expansion corner at X/H = 0.2.
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Figure 8. Density contours for regular reflection, with a Mach-2.0 flow deflected through
19.44 degrees and with the expansion corner at X/H = 0.2 : (a) coarse mesh; (b) standard
mesh. Both cases present the same contour increment of 5% intervals in ρ/ρ∞.
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Figure 9. Density contours for Mach reflection, with a Mach-2.0 flow deflected through
20.44 degrees, i.e. 0.5 degrees above the detachment boundary of figure 6, with the expansion
corner at X/H = 0.2: (a) coarse mesh; (b) standard mesh; (c) Mach-number distribution along
the line Y/H = 0.001.

Mach-reflection studies the required low pressure is generated by the expansion wave
from the trailing edge of the wedge used to generate the incident shock wave (e.g. Ben-
Dor et al. 1999), as shown in figure 2(b). In the present study, reflection of the initial
expansion wave from the upper surface of the duct back onto the streamtube is the
equivalent mechanism. Thus the position and scale of the Mach stem depend critically
upon the axial location of the expansion corner relative to the upper leading edge.

Figures 9(a, b) and 10 show perturbations from the regular-reflection result of
figure 8(b). The operating points in the (M1, δ1)-domain are shown in figure 11.
Figure 9 shows an increase of 1.0 degree from figure 8(b), so that the incidence
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Figure 10. Density contours for Mach reflection of an incident flow perturbed from the
Mach-2.0, 19.44 degrees incidence regular-reflection case of figure 8(b). (a) Incidence maintained
at the original value and Mach number reduced to 1.92; (b) Mach number returned from the
state shown in (a) to the original value; (c) Mach number held fixed and incidence reduced
by 0.5 degrees; (d) further reduction in incidence by 0.5 degrees. These operating points are
shown in figure 11.

is just 0.5 degrees above the predicted detachment criterion. The simulation was
initialized with the output data from the regular reflection of figure 8, but the new
flow conditions at the inflow boundary were enforced. Figures 9(a) and 9(b) are
coarse-mesh and standard-mesh simulations and show a mesh insensitivity similar to
that of the regular-reflection case of figure 8. A specific point to note is the behaviour
of the reflected shock wave formed at the triple point. This reflects in turn from the
upper surface of the duct back to the post-Mach-stem streamtube. The fact that it then
penetrates through the streamtube up to the lower wall shows that the streamtube flow
is fully supersonic at this position. A minimum-streamtube area – the sonic throat –
has formed somewhat upstream of this impingement zone. This is further illustrated
by figure 9(c), where the variation in Mach number with streamwise distance (for
Y/H = 0.001) establishes a clear supersonic zone in the streamtube before the abrupt
deceleration to subsonic flow at X/H ≈ 3.54. Thus the impinging shock wave is
unable to influence the position and scale of the Mach stem in this case.
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Figure 11. Detail in the (M1, δ1)-plane showing the test cases corresponding to parts of
figures 8–10.

In figure 10(a) the situation is perturbed from the regular-reflection case of
figure 8(b), crossing the ‘detachment’ boundary by a reduction in Mach number
to 1.92 whilst maintaining constant flow deflection. Once more a stable Mach
reflection is formed. Figure 10(b) corresponds to starting from the conditions of
figure 10(a) and increasing the Mach number back to the initial value of 2.0. Thus
figure 10(b) and figure 8(b) correspond to the same Mach number and incidence and
demonstrate the dual-solution possibility and the possibility of hysteresis in the flow
process. Figure 10(b) can also be produced by decreasing the incidence from the state
illustrated in figure 9(b). Figures 10(c) and (d) show successive 0.5 degree reductions
in flow deflection from the state of figure 10(b), with a return to regular reflection in
figure 10(d) at an angle just below the predicted von Neumann criterion.

4.2. Effect of streamwise positioning of the expansion corner, M1 = 2.0

Figure 12 shows the effect of the relative positioning of the lower-surface expansion
corner. These simulations were all performed at Mach 2.0 and at 0.5 degrees above
the detachment criterion. In each case a regular-reflection case (at 0.5 degrees below
the detachment criterion) was generated, then the inflow boundary incidence was
increased by 1.0 degree. Figure 12(g) illustrates the closest approach of the (projected)
impingement position of the incident shock wave to the expansion corner. That is, it
represents the least ‘off-design’ movement from the classical shock-on-shoulder case of
figure 1. Figures 12(a–c) appear as conventional Mach-reflection cases. They include
the trajectory of the critical Mach line (evaluated from the CFD), which originates
in the initial expansion fan and terminates on the boundary of the post-Mach-stem
streamtube at the sonic throat. All these figures also include the computed sonic
line, superimposed upon the density contours, and clearly seen in figures 12(a–c)
as positioned at the foot of the impinging critical Mach line. For Figure 12(d) the
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Figure 12. Density contours for Mach reflection of an incident flow at Mach 2.0 and 20.44
degrees deflection, showing the effect of moving the expansion-corner relative to the upper-
surface leading edge, to the following values of X/H : (a) 0.1; (b) 0.2; (c) 0.4; (d) 0.6; (e) 0.8;
(f) 0.9; (g) 1.3. The trajectory of the critical Mach line impinging upon the sonic throat is
shown by the bold line in the first three cases. The dashed curve indicates the location of the
sonic line.
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Figure 13. Simulations showing the insensitivity of the flow field to the location of the outflow
boundary. (a) A repeat of figure 12(d), with the outflow boundary moved downstream by a
further two units in X/H . (b) A repeat of figure 12(e).

reflected shock wave from the triple point, having itself been reflected from the upper
surface of the duct, overtakes the critical Mach line so that no sonic streamtube
condition is achieved. The streamtube is subsonic up to the outflow boundary. A
feedback process is now possible where movement of the triple point, communicated
to the slipstream via the trajectory of the reflected shock wave, can provide a further
influence on the Mach stem. Because the exit flow is subsonic (the lowest value is
approximately 0.82), figure 13 is used to judge any flow-field sensitivity to the position
of the outflow boundary. In this case figure 12(d) is repeated, with the streamwise
extent of the flow field extended by a further two units in X/H . Apart from a few
differences in detail, figures 13(a) and 12(d) are virtually identical. In a similar manner
figure 13(b) shows that the result of figure 12(e) is also insensitive to the location of
the downstream outflow boundary.

With rearwards movement of the expansion corner, the triple point progressively
moves from behind the expansion wave (figures 12a, b), through it (figures 12c–d)
and in front of it (figures 12f , g). Between figures 12(e) and 12(f) there is a marked
difference in the reflected wave, which corresponds to a change from the ‘weak’
to the ‘strong’ option. Using the exact MOC computations, three-shock modelling
shows that this change must occur in the expansion fan when the triple point is
at a polar angle of about 40 degrees, measured from the expansion corner. This is
illustrated by figure 14, which shows polar plots for various triple-point locations with
respect to the expansion fan, the solid and dashed lines giving the pressure versus
flow deflection immediately downstream of, respectively, the reflected wave and the
transmitted wave (i.e. the Mach stem). Only the upper part of the Mach-stem curve –
the strong-shock solution – is appropriate; for the reflected wave, both branches,
upper (strong) and lower (weak) are possible. The intersection between the two curves
identifies the triple point TP. Figure 14(a) shows the case with the triple point located
behind the expansion fan, with a weak solution for the reflected wave. In front of the
expansion wave, figure 14(c), only the strong option is possible for the reflected shock.
Figure 14(b) corresponds to the location in the expansion wave, at φ ≈ 40 degrees, at
which the transition from a weak to a strong reflected shock wave occurs. Figure 12(e)
happens to be close to this condition. The sonic line in figure 12(f) shows that the
subsonic flow downstream of the reflected shock wave has been accelerated quickly
to supersonic speed. There is also a complex stratification below the slipstream from
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Figure 14. Post-shock-wave conditions at the triple point TP, showing pressure vs. flow angle
for M1 = 2.0 at 20.45 degrees (initial-flow incidence at 0.5 degrees above the detachment
criterion). The solid and dashed lines, respectively, refer to the conditions downstream of
the reflected wave and the transmitted wave (i.e. the Mach stem). (a) Triple-point formation
behind the expansion fan; (b) triple-point formation in the expansion fan at an angle φ = 39.65
degrees relative to the lower-surface expansion corner; (c) triple-point formation in front of
the expansion fan.

the triple point, the sonic-line locus showing that the bulk of the flow at the exit
boundary (Y/H � 0.08) is supersonic.

Previously, figures 8(b) and 10(b) showed the dual-solution possibility for the
Mach-2.0 case, with the expansion corner positioned at X/H = 0.2. A similar result
is demonstrated in figure 15, for the extreme case of figure 12(g), with the expansion
corner located at X/H = 1.3. This shows two simulations, both at 0.5 degrees below
the detachment criterion. Figure 15(a) was initiated with the data of figure 12(g) but
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Figure 15. CFD simulation showing the dual-solution possibility for incident flow at Mach 2.0,
incidence 0.5 degrees below the detachment criterion and the expansion corner at X/H = 1.3.
(a) Mach reflection achieved with the flow initialized using data from figure 12(g) but with
reduced inflow angle, and (b) regular reflection produced by an impulsive start of the flow.

with the inflow incidence reduced, whereas figure 15(b) is a regular reflection result
produced by an impulsive initialization of the flow field with the required initial
conditions imposed everywhere in the domain.

4.3. Effect of variation in M1 at 0.5 degrees above the detachment criterion

In figure 16 the expansion corner is fixed at X/H = 0.1 and the Mach number is
progressively increased, always maintaining the flow deflection at 0.5 degrees above
the appropriate detachment condition. Figure 12(a), at Mach 2.0, was essentially the
first run in this series and only this and figure 16(a), at Mach 2.1, provide interactions
with the triple point behind the expansion fan. These cases, which are similar in
character to the conventional wedge-generated Mach reflection, are referred to, for
convenience, as ‘type-1’ cases. Once the triple point has entered the expansion fan,
the interactions are referred to as ‘type-2’. Up to figure 16(c) the reflected shock wave
from the upper surface can penetrate fully through the streamtube because the flow
is locally supersonic, as is seen by the positioning of the sonic line in the figures.
Above this Mach number a two-layer nature of the streamtube becomes apparent, the
reflected shock wave penetrating only through the supersonic upper layer, essentially
that part of the flow downstream of the segment of the Mach stem that has interacted
with the expansion fan, whereas the lower layer remains fully subsonic. Again the
sonic line in the figures shows how the respective subsonic and supersonic zones are
established. There is a gradual evolution of the flow field up to M1 = 2.7 (figure 16f)
but by M1 = 2.75 (figure 16g) a large-scale transition has occurred, to what is referred
to as a ‘type-3’ interaction. Clearly the flow is not steady, characterized partly by
the roll-up of the various slip surfaces. More basically, there is an overall large-scale
motion, albeit at long time scales; the computation is actually presented at this stage
since, at later times, the Mach-stem segment at the lower wall propagated up to the
expansion corner and the computation was stopped.

A similar phenomenon – but now producing a nearly steady end state with only
slight flow-field oscillations – is seen in figure 17 for the case with the expansion
corner located at X/H = 0.4. Even for the first of this sequence; see figure 17(a), the
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Figure 16. Density contours. The expansion corner is at X/H = 0.1 and the incident flow
is at 0.5 degrees above the detachment condition. (a) M1 = 2.1; (b) M1 = 2.2; (c) M1 = 2.3;
(d) M1 = 2.4; (e) M1 = 2.5; (f) M1 = 2.70; (g) M1 = 2.75. In each figure, the dashed curve
indicates the location of the sonic line.
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Figure 17. Density contours for Mach reflection with the expansion corner at X/H = 0.4
and the incident flow at 0.5 degrees above the detachment criterion. (a) M1 = 2.1; (b) extended
mesh version of (a); (c) M1 = 2.2; (d) M1 = 2.3; (e) M1 = 2.4; (f) detail for (e), with 10%
contour intervals in ρ/ρ∞. The dashed curve indicates the location of the sonic line.
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Figure 18. Density contours showing the time development of the change to type-3 Mach
reflection, for the case of figure 17(d). Panels (a) to (g) are density contours at the following
times T U1/H after initiation of the computation: 19.6, 44.0, 53.8, 58.7, 63.6, 68.5, 73.4. (h) The
final streamlines, in 50 equal intervals in mass flux.

post-Mach-stem streamtube is subsonic up to the exit plane. Figure 17(b) repeats this
case, with a streamwise extension of the domain, showing once more an insensitivity
of the flow field to the location of the exit boundary. In the sequence of figure 17, the
transition from a recognizable Mach reflection to a situation where the shock system
has migrated close to the expansion corner takes place in the range 2.3 � M1 � 2.4.
Figure 18 shows the time-history of the transition from figure 17(d) to figure 17(e),
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Figure 19. Schematic showing the interaction of the reflected expansion wave with the
slipstream downstream of the triple point, for the type-1 case.

obtained by enforcing (at time T = 0) an M1 = 2.4 inflow boundary condition (with
inflow incidence 0.5 degrees above the corresponding detachment criterion) upon
the M1 = 2.3 flow state of figure 17(d). By figure 18(a) the interaction has caused
the Mach stem to form an inflexional profile. This develops as a small segment of
‘weak’ shock that, by figure 18(b), has focused to form a second triple point, with
the post-shock supersonic flow terminated by a developing secondary shock wave.
Later times show a progressive enlargement of the weak-shock segment. Below the
new triple point the interaction with the expansion fan generates large upwards flow
deflections. In consequence, the flow that passes through the wall-segment of the
Mach stem (i.e. essentially that part of the Mach stem from the wall up to the trailing
edge of the expansion fan) experiences very large flow divergence – also illustrated
by the ‘streamlines’ in figure 18(h) for the nearly steady case of figure 17(e) – and an
associated deceleration to very low velocities. Downstream of the maximum-height
position the streamtube constricts very substantially again, so that the flow accelerates
from near-stagnant conditions to near-sonic speed at the outflow boundary of the
domain in figure 17(e). Above this particular streamtube the flow has divided into
three further streamtubes, demarcated by the slipstreams from the two triple points.
Each of these experiences a sub-to-supersonic acceleration, as shown in detail in
figure 17(f), the large divergence of the flow in the bottom streamtube generating the
constriction for the necessary throats in the upper layers. The fact that figure 18(g)
shows that the wall Mach stem is forwards of the location for the Mach stem
in figures 17(e, f ) is an indication that, in the development from figure 17(d) to
figure 17(e), the shock-wave system overshoots its final equilibrium position.

5. Discussion
Figure 19 shows a simple schematic for the type-1 Mach reflection. Basically, three

geometrical factors control the size and location of the Mach stem; firstly, the ratio
of the height of the Mach stem, HMS , to the height of the sonic throat, H ∗; secondly,
the horizontal spacing between the incident shock wave I and the critical Mach line
C−

crit , since the triple point and the sonic throat must lie on the first and second of
these two trajectories, respectively; thirdly, the ratio of the length of the subsonic
streamtube L and the height of the Mach stem HMS . These various factors will be
considered next, in § § 5.1–5.3 for the special case of the type-1 Mach reflection.

5.1. Streamtube width at the Mach stem and sonic throat: type-1 interaction

From the initial expansion-wave conditions and the MOC predictions for the incident
shock-wave trajectory, all conditions at points 3–7 in figure 19 are known exactly.
Assuming one-dimensional streamtube motion, the average conditions at point 8 and
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M1 δ1 XLE/H HMS/H H ∗/H HMS/H
∗ L/H g L/HMS Seen in

2.0 20.44 0.1 0.190 0.140 1.366 (1.371) 1.261 0.24 6.62 (7.43) figure 12(a)
2.0 20.44 0.2 0.227 0.166 1.372 (1.371) 1.326 0.30 5.84 (7.06) figure 12(b)
2.0 20.44 0.4 0.280 0.204 1.373 (1.371) 1.614 0.39 5.76 (6.62) figure 12(c)
2.1 21.42 0.1 0.278 0.198 1.408 (1.395) 1.419 0.32 5.10 (5.50) figure 16(a)
2.2 22.25 0.1 0.364 0.255 1.426 (1.418) 1.58 0.28 4.34 (4.70) figure 16(b)
2.0 20.44 0.1 0.069 0.049 1.408 (1.371) 0.558 0.19 8.09 (7.73) figure 21(a)
2.5 24.02 0.1 0.2175 0.146 1.490 (1.473) 0.868 0.20 3.99 (3.57) figure 21(b)
2.75 24.88 0.1 0.246 0.159 1.550 (1.507) 0.940 0.08 3.82 (3.36) figure 21(c)

Table 1. Computed scale of the subsonic streamtube downstream of the Mach stem for various
type-1 interactions, all taken with the initial flow deflection at 0.5 degrees above the predicted
detachment criterion for regular-to-Mach transition. H ∗ and HMS are the heights of the sonic
throat and the Mach stem respectively. L is the streamwise length from the Mach stem to the
sonic throat. The numbers in parentheses are taken from one-dimensional streamtube theory
for HMS/H

∗ and from (5.4) for L/HMS . The fractional length g of the subsonic streamtube, for
impingement of the first C− characteristic, was determined by inspection of the CFD solutions.

hence the ratio HMS/H
∗ can be calculated. Table 1 shows the close agreement between

this value and the values obtained from the CFD simulations.

5.2. Origin of the critical Mach wave in the initial expansion fan and the length
of the subsonic section of the post-Mach-stem streamtube: type-1 interaction

Figures 12(a–c) showed the origin of the trajectory of the critical Mach line in the
initial expansion wave. This location can also be inferred using simple flow-field
modelling based on figure 19. The required pressure matching between points 8 and
9, and the fact that points 5 and 9 are linked by isentropic flow, means that the
conditions at point 9 can be specified completely. With zero flow deflection δ9 at
point 9, the Riemann variable (ν + δ)9 can also be specified, where ν is the Prandtl–
Meyer angle. Along the C−

crit characteristic the variable ν + δ must reduce, as a result
both of the entropy increase along its path from the upper wall at point 10 to the
slipstream at point 9 (see the characteristic equations (2.1) and (2.2)) and also of its
passage across the reflected shock wave. For zero entropy change, ν + δ would be
invariant along the Mach line; as a first-order approximation, it is assumed that, since
points 2 and 10 have the same entropy, as also do points 5 and 9,

(ν + δ)10 − (ν + δ)9 ≈ (ν + δ)2 − (ν + δ)5. (5.1)

Here, the conditions at points 2 and 5 are known exactly. In a similar manner, the
initial value of (ν − δ)crit on the critical C+

crit characteristic in the initial expansion
wave is approximated as

(ν − δ)crit − (ν − δ)10 ≈ (ν − δ)1 − (ν − δ)2. (5.2)

Noting that δ10 = 0,

(ν − δ)crit ≈ (ν + δ)9 + (ν − δ)1 − (ν − δ)2 + (ν + δ)2 − (ν + δ)5. (5.3)

It is then easy to determine the ray angle, in the initial expansion wave, for the
critical Mach line, C+

crit . Figure 20 shows how this depends upon M1 and includes
the values determined directly from the CFD of figures 12(a), 16(a) and 16(b). The
agreement between the CFD data and the result (5.3) is so close that the approximate
treatment of the entropy-variation term is fully justified. Figure 20 shows that, for all
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Figure 20. Identification of the C+
crit Mach line in the initial expansion wave, showing the ray

angles φLE and φT E (relative to the expansion corner) of the leading- and trailing-edge Mach
lines, the prediction of the ray angle for the critical Mach wave C+

crit using (5.3) (solid line)
and the CFD data (solid symbols) taken from figures 12(a), 16(a) and 16(b).

Mach numbers, the C+
crit Mach line is contained centrally within the initial expansion

wave, so that the reflected wave expansion is always sufficiently strong to provide a
sonic throat in the post-Mach-stem streamtube. That it does not, apart from at the
lower Mach numbers and the most forward positions of the expansion corner, is a
consequence of the progressive movement of the triple point into the expansion fan
and the associated forwards movement of the impingement position of the reflected
shock wave on the slipstream.

Extending this analysis to determine the spacing between the incident shock wave
and the C−

crit wave – the primary driver for the length ratio of the subsonic streamtube,
L/H – is difficult and it is easier to consider the outcomes from the CFD modelling.
An increase in XLE/H (i.e. a rearwards movement of the expansion corner) must
automatically increase the wave spacing; this is also achieved by increased M1,
because of the increased sweep of the waves. Both these effects are seen in the CFD
predictions for L/H in table 1 (the rearwards movement of XLE/H in rows 1, 2 and
3 of the table and the increased M1 values in rows 1, 4 and 5).

A demonstration of how the scale L/H of the Mach reflection can be radically
changed by altering the spacing of the incident shock wave and the C−

crit Mach line,
can be provided by deliberately generating a centred expansion wave, originating on
the upper surface of the channel at a position forwards of the impingement region
of the primary expansion wave. This is illustrated for the cases of figures 12(a)
(M1 = 2.0), 16(e) (M1 = 2.5) and 16(g) (M1 = 2.75), which are type-1, type-2 and
type-3 interactions respectively. Equation (5.3) can be used to predict the upper-
surface turning angle required to (just) provide the appropriate critical C− condition;
the values obtained are approximately 6.5, 9.3 and 10.2 degrees, respectively, for
the three cases. Figure 21 presents these cases using an upper-surface turning angle
approximately 50% larger than the predicted value to ensure proper establishment
of a supersonic flow in the post-Mach-stem streamtube. The centred expansion
was implemented in the computations by deflecting the upper solid boundary of
the domain abruptly through the required angle and maintaining this new surface
inclination for the remainder of the domain up to the downstream outflow boundary;
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Figure 21. Effect on the scale of the Mach stem, for the cases of figures 12(a), 16(e) and
16(g), of an expansion corner positioned on the upper-surface of the channel. (a) M1 =
2.0, with the upper-surface expansion corner (9 degrees) positioned at X/H = 0.7. (b) M1 = 2.5,
with the upper-surface expansion corner (12 degrees) positioned at X/H = 0.8. (c) M1 = 2.75,
with the upper-surface expansion corner (15 degrees) again positioned at X/H = 0.8.

thus the height of the computational domain extends beyond the upper boundary
shown in these figures. The expansion corner was located as far forwards as possible,
to ensure the earliest possible interaction of the expansion wave with the slip
surface, whilst avoiding the situation where it actually catches up with (and therefore
attenuates) the incident shock wave. The three results each now provide a type-1
Mach reflection. The various scales associated with the subsonic streamtube, for these
three cases, are also included in table 1.

5.3. Length-to-height ratio of the subsonic streamtube and the scale
of the Mach stem: type-1 interaction

Table 1 includes the CFD data for the ratio of the streamtube length L and the height
of the Mach stem, HMS . The larger this ratio the shallower the streamtube, for a given
spacing between the incident shock wave and the critical Mach line, and the lower
probability therefore that the triple point will then enter the expansion fan. The table
clearly shows that the ratio reduces rapidly with increased Mach number. A geometric
approximation, based upon the schematic of figure 19, assumes that the initial slip-
surface trajectory is a straight line, determined by the slipstream slope δ5,6 predicted
at the triple point, and that once the first Mach line (C−

1 ) impinges on the slip surface
the trajectory is a circular arc up to the impingement of the critical Mach line (C−

crit )
at the sonic throat, where the local flow-deflection angle δ9 is zero. Of course, this
geometric model does not satisfy the pressure matching required between the external
supersonic flow and the internal subsonic flow (although the correct matching at
the Mach stem and at the sonic throat has already been enforced). Li & Ben-Dor
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Figure 22. Variation in the ratio of the length of the subsonic streamtube segment and the
height of the Mach stem. The solid lines correspond to the geometrical model of (5.4), for
g values 0.0, 0.2 and 0.4. The individual symbols are the results from the CFD cases listed
in table 1, with open symbols in the range 0 � g � 0.2 and solid symbols in the range
0.2 � g � 0.4.

(1997) presented a model for wedge-generated Mach reflection, where the slipstream
trajectory followed the predicted streamlines of the incident expansion wave, which
also provided no general pressure matching, however. Assuming that HMS/H

∗ is
given by one-dimensional modelling, if the first Mach line of the expansion wave, C−

1 ,
impinges at a distance gL from the Mach stem then the geometrical model gives

L

HMS

≈ (H ∗/HMS − 1)

(1 − g)(1 − cos δ5,6)/ sin δ5,6 + gtan δ5,6

. (5.4)

Equation (5.4) is plotted in figure 22. It also includes values from the specific
CFD cases, which are listed in table 1. The CFD results clearly support the trends
suggested by (5.4), showing that L/HMS reduces both with later impingement of the
C−

1 Mach wave (i.e. with increased g) and also with increased Mach number, through
the direct effect on the deflection δ5,6 of the slipstream at the triple point (note that
the deflection is downwards, making the deflection angle negative). It is this reduction
in L/HMS that quickly propels the triple point into the expansion fan.

5.4. Movement of the triple point into the expansion wave and the transition
from type-2 to type-3 reflection

The previous sections showed various factors that increase the scale of the Mach stem
for type-1 interactions. An increased Mach number slightly elongates the subsonic
streamtube and strongly increases its width-to-length ratio HMS/L. Rearwards
movement of the expansion corner elongates slightly the post-Mach-stem subsonic
streamtube and reduces the clearance between the foot of the Mach stem and the
trailing edge of the expansion fan. For these reasons it was only possible to produce
type-1 interactions for low Mach numbers and for expansion-corner positions that
are far forwards. The definition of type-1 and type-2 interactions is essentially one
of convenience, however, defined by whether the triple point is behind or within
the expansion wave. The first main effect of enlargement of the Mach stem is that
eventually the reflected shock wave from the triple point reflects back onto the
slipstream before the C−

crit Mach wave reaches it. At this stage a sonic throat is no
longer achieved in the post-Mach-stem streamtube, or rather in the central portion
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Figure 24. Assessment of a possible hysteresis process for the case of figure 17(d). (a) M1

reduced to 2.3, whilst maintaining incidence at 0.5 degrees above the Mach-2.3 detachment
criterion; (b) M1 maintained at 2.4, whilst reducing incidence by 1.0 degrees to 0.5 degrees
below the detachment criterion.

because the streamtube stratification of the type-2 flow means that the outer part
might remain supersonic. In itself this does not make an immediate contribution
to the transition to type-3 Mach reflection, but the difference between the cases of
figures 16(f) and 16(g), or between figures 17(d) and 17(e) (or the time sequence
of figure 18) shows the importance of the progressive forwards movement of the
impingement position of the reflected shock wave on the post-Mach-stem streamtube.
The behaviour of the shock-wave reflection at the upper surface of the duct is also
significant. For the cases given in figure 18 this shows a regular-to-Mach reflection
transition, and it is possible that this transition would exhibit a hysteresis if the
process were reversed. In figure 23 the preceding computations are used to define the
M1 versus XLE/H domain for the transition from type-2 to type-3 Mach reflection. To
assess any type-2–type-3 hysteresis, figure 24 shows two computations, both starting
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with the M1 = 2.4 (type-3) result of figure 17(e). In the first computation the inflow
conditions are altered to reduce M1 to 2.3, with a new incidence 0.5 degrees above the
detachment criterion for Mach 2.3; it shows that a type-3 reflection is still preserved,
and may be compared with the type-2 conditions of figure 17(d). A further reduction
in M1 to 2.2, however, produced the same flow solution as figure 17(c). This effect has
not been explored further, but the boundary in figure 23 probably represents an upper
Mach-number limit for type-2–type-3 transitions. In the second case, figure 24(b), M1

is maintained at 2.4 but the flow deflection is reduced, so that it is 0.5 degrees below
the detachment condition. In this case the flow reverts to type-2 Mach reflection,
but the dual-solution possibility is retained since regular reflection can obviously be
produced at these conditions also.

The effect of an increasing flow deflection on the type-3 interaction has not been
studied beyond the cases presented. Several other points should be emphasized,
however. Firstly, computations were stopped when the wall segment of the Mach
stem approached the expansion corner so that no assessment was made as to when
the shock system might propagate upstream of the expansion corner and ‘unstart’ the
duct flow. Secondly, the flow processed by the Mach stem – figures 16(g) and 17(e) –
experiences a large divergence and a very substantial deceleration to produce a large
‘bubble’ of nearly stagnant flow. The peak of this bubble corresponds with the sub-
supersonic throats generated in the upper streamtubes, as shown in figure 17(f). There
is every reason to believe that the bubble is an actual inviscid effect, but there would be
every likelihood in a real viscous flow that it would result in a flow recirculation, i.e. a
flow ‘separation’ but one that has origins in the inviscid flow-field behaviour. Thirdly,
type-1 and type-2 computations generally achieved a steady state, but this was not
the case for the type-3 simulations. Figure 17(e) showed only a slow, small-amplitude,
backwards–forwards movement, so that the figure is probably a good representation of
a mean state. Figure 16(g) is clearly unsteady, however, both in terms of the shear layer
rollup, which is not of immediate consequence, and also the large-scale overall motion.

6. Conclusions
There are several results of special significance. Firstly, there is a large difference

between the permitted deflection angles for the shock-on-shoulder design case and
those angles that permit regular reflection to be maintained at off-design. Figure 6
would indicate that the maximum-design-angle case – at least theoretically –
corresponds to the angle for shock detachment from the leading edge of the
shock generator. Although an intake, for example, is unlikely to operate so close
to the leading-edge detachment condition, maintaining flow deflections below the
detachment criterion (possibly even below the von Neumann criterion) is potentially
very restrictive and becomes increasingly so at high Mach numbers. The flow-
field differences and potential hysteresis associated with the dual-solution processes
also presents a significant phenomenon, not least for the high-speed intake flows
which stimulated this investigation initially. The implication is that for a fixed flight
condition different flow fields can develop, with subsequent alterations to combustor
inlet conditions and flight performance. Secondly, there is a severe restriction on
Mach number and expansion-corner position, shown by figure 23, if a large-scale
perturbation of the type-3 interaction is to be avoided. At M1 = 2.0 the shock-on-
shoulder condition requires XLE/H ≈ 1.5 and this value increases with M1. Avoidance
of the type-3 interaction, however, means that the streamwise position of the expansion
corner must be located increasingly close to the shock-generator leading edge as M1
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increases; essentially the compression generated by the upper-surface shock wave then
becomes increasingly counteracted by the lower-surface expansion system, so that the
compression effectiveness of the turning process reduces. Thirdly, the scale of the Mach
reflection is clearly controlled by the reflected expansion wave and the positioning
of this wave relative to the trajectory of the shock wave reflected from the triple
point. This places significant constraints upon the permitted values of XLE/H and
M1, because of the broad spatial spread of the reflected expansion wave. As figure 21
demonstrated, however, the scale of the Mach reflection can be radically altered by
deliberate generation of a further expansion wave. This might provide the elements
of a control mechanism as long as the total geometric configuration is considered, in
order to ensure that the compression ability of the duct inlet flow is not compromised.

A final comment should be made on the fact that the results – CFD, MOC and
simple analytical modelling – are inviscid and therefore provide a specific limiting
case. One reason for ensuring that numerically induced total pressure losses were
minimal for the flow through the initial expansion wave (near the wall), was the
observation from early computations with a very coarse mesh (coarser than any
presented here) that the type-2–type-3 transition occurs at a lower Mach number,
and with a tendency for the wall shock to move more rapidly up to the expansion
corner, than for the fine mesh results presented throughout this paper. It has to be
assumed that viscous effects would accentuate this process.
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